Role of renin-angiotensin-aldosterone system in salt-sensitive hypertension induced by sensory denervation.

نویسندگان

  • Y Huang
  • D H Wang
چکیده

To define the role of the renin-angiotensin-aldosterone system in a novel salt-sensitive model, neonatal Wistar rats were given capsaicin (50 mg/kg sc) on the first and second days of life. After weaning, male rats were divided into the following six groups and treated for 3 wk with: control + normal sodium diet (CON-NS), CON + high-sodium diet (CON-HS), CON + HS + spironolactone (50 mg x kg(-1) x day(-1), CON-HS-SP), capsaicin pretreatment + NS (CAP-NS), CAP-HS, and CAP-HS-SP. Radioimmunoassay shows that plasma renin activity (PRA) and plasma aldosterone level (PAL) were suppressed by HS, but they were higher in CAP-HS than in CON-HS and CON-HS-SP (P < 0.05). Both tail-cuff systolic blood pressure and mean arterial pressure were higher in CAP-HS than in all other groups (P < 0.05). Urine water and sodium excretion were increased with HS intake, but they were lower in CAP-HS than in CON-HS (P < 0.05). Western blot did not detect differences in adrenal AT1 receptor content. Therefore, insufficiently suppressed PRA and PAL in response to HS intake by sensory denervation may contribute to increased salt sensitivity and account for effectiveness of spironolactone in lowering blood pressure in this model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renal denervation attenuates NADPH oxidase-mediated oxidative stress and hypertension in rats with hydronephrosis.

Hydronephrosis is associated with the development of salt-sensitive hypertension. Studies have suggested that increased sympathetic nerve activity and oxidative stress play important roles in hypertension and the modulation of salt sensitivity. The present study primarily aimed to examine the role of renal sympathetic nerve activity in the development of hypertension in rats with hydronephrosis...

متن کامل

Antihypertensive mechanisms underlying a novel salt-sensitive hypertensive model induced by sensory denervation.

A novel model of hypertension recently developed in our laboratory shows that neonatal degeneration of capsaicin-sensitive sensory nerves renders a rat responsive to a salt load with a significant rise in blood pressure. To determine the role of the renin-angiotensin system and the sympathetic nervous system in the development of hypertension in this model, newborn Wistar rats were given capsai...

متن کامل

Me 03-1 Role of Aldosterne and Mineralocorticoid Receptor in Salt-sensitive Hypertension.

The aldosterone/mineralocorticoid receptor (MR) pathway regulate renal excretory function and control BP. Notably, we identified Rac1 as a novel ligand-independent modulator of MR (Nat Med 2008), and found involvement of the Rac1-MR pathway in rodent models of salt-sensitive hypertension (JCI 2011). In the clinical trial (EVALUATE study), effects of MR antagonist on urinary albumin excretion we...

متن کامل

Role of angiotensinogen and relative aldosterone excess in salt-sensitive hypertension.

Role of Angiotensinogen and Relative Aldosterone Excess in Salt-Sensitive Hypertension To the Editor: We read with great interest the article by Michel et al. They demonstrated that circulating angiotensinogen concentration (AGT) was positively associated with aldosterone level and blood pressure in subjects of African ancestry with high urinary Na/K ratio. Their findings may elucidate one of t...

متن کامل

Neural control of blood pressure: focusing on capsaicin-sensitive sensory nerves.

Hypertension is a major risk factor leading to devastating cardiovascular events such as myocardial infarction, stroke, heart failure, and renal failure. Despite intensive research in this area, mechanisms underlying essential hypertension remain to be defined. Accumulating evidence indicates that neural components including both sympathetic and sensory nerves innervating the cardiovascular and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 281 5  شماره 

صفحات  -

تاریخ انتشار 2001